4,308 research outputs found

    X-ray bursts: Observation versus theory

    Get PDF
    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field

    An orientable, stabilized balloon-borne gondola for around-the-world flights

    Get PDF
    A system capable of pointing a balloon-borne telescope at selected celestial objects to an accuracy of approximately 10 arc minutes for an extended period (weeks to months) without reliance on telemetry is described. A unique combination of a sun/star tracker, an on-board computer, and a gyrocompass is utilized for navigation, source acquisition and tracking, and data compression and recording. The possibilities for intelligent activities by the computer are also discussed

    Decrease in the high energy X-ray flux from Cen XR-2. Search for X-rays from the large and small Magellanic clouds

    Get PDF
    High energy X ray sky survey data on decreased intensity of Cen XR-2, and X ray energy flux from Magellanic clouds - Mildura, Australia, October 15 and 24, 196

    X-ray bursters and the X-ray sources of the galactic bulge

    Get PDF
    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts

    A search for X-ray pulsations from the galactic center

    Get PDF
    Data from the SAS-3 satellite were used in a search for X-ray pulsations from the direction of the galactic center. No periodic X-ray behavior was detected in the frequency interval 0.6 Hz to 0.0006 Hz and energy range 2.5 - 35 keV. For periods less than 60 sec, the upper limit to the amplitude of any pulsation in the 2.5 - 10 keV band is approximately .0017 cts/sq cm/s. This corresponds to a pulsed fraction of approximately 1.3 percent of the total GCX flux. Somewhat higher limits apply for longer periods and for energies greater than 10 keV

    Bounds on the Compactness of Neutron Stars from Brightness Oscillations

    Get PDF
    The discovery of high-amplitude brightness oscillations at the spin frequency or its first overtone in six neutron stars in low-mass X-ray binaries during type~1 X-ray bursts provides a powerful new way to constrain the compactness of these stars, and hence to constrain the equation of state of the dense matter in all neutron stars. Here we present the results of general relativistic calculations of the maximum fractional rms amplitudes that can be observed during bursts. In particular, we determine the dependence of the amplitude on the compactness of the star, the angular dependence of the emission from the surface, the rotational velocity at the stellar surface, and whether there are one or two emitting poles. We show that if two poles are emitting, as is strongly indicated by independent evidence in 4U 1636-536 and KS 1731-26, the resulting limits on the compactness of the star can be extremely restrictive. We also discuss the expected amplitudes of X-ray color oscillations and the observational signatures necessary to derive convincing constraints on neutron star compactness from the amplitudes of burst oscillations.Comment: 8 pages plus one figure, AASTeX v. 4.0, submitted to The Astrophysical Journal Letter

    Latitudinal Shear Instabilities during Type I X-ray Bursts

    Full text link
    Coherent oscillations have been observed during Type I X-ray bursts from 14 accreting neutron stars in low mass X-ray binaries, providing important information about their spin frequencies. However, the origin of the brightness asymmetry on the neutron star surface producing these oscillations is still not understood. We study the stability of a zonal shearing flow on the neutron star surface using a shallow water model. We show that differential rotation of >2% between pole and equator, with the equator spinning faster than the poles, is unstable to hydrodynamic shear instabilities. The unstable eigenmodes have properties well-matched to burst oscillations: low azimuthal wavenumber m, wave speeds 1 or 2% below the equatorial spin rate, and e-folding times close to a second. Instability is related to low frequency buoyantly driven r-modes that have a mode frequency within the range of rotation frequencies in the differentially rotating shell. We discuss the implications for burst oscillations. Growth of shear instabilities may explain the brightness asymmetry in the tail of X-ray bursts, although some fine tuning of the level of differential rotation and a spin frequency near 300 Hz are required in order for the fastest growing mode to have m=1. If shear instabilities are to operate during a burst, temperature contrasts of 30% across the star must be created during ignition and spreading of the flash.Comment: To appear in ApJ (12 pages, 11 figures

    Rapid fluctuations in the high-energy X-ray flux from a source in Crux

    Get PDF
    Balloonborne X ray telescopic observations of two point sources in Cru

    Detection of high-energy X-ray flare from a source in Crux

    Get PDF
    Balloonborne X ray telescopic observation of point source in Cru
    corecore